Mutations affecting craniofacial development in zebrafish.
نویسندگان
چکیده
In a large-scale screen for mutations affecting embryogenesis in zebrafish, we identified 48 mutations in 34 genetic loci specifically affecting craniofacial development. Mutants were analyzed for abnormalities in the cartilaginous head skeleton. Further, the expression of marker genes was studied to investigate potential abnormalities in mutant rhombencephalon, neural crest, and pharyngeal endoderm. The results suggest that the identified mutations affect three distinct aspects of craniofacial development. In one group, mutations affect the overall pattern of the craniofacial skeleton, suggesting that the genes are involved in the specification of these elements. Another large group of mutations affects differentiation and morphogenesis of cartilage, and may provide insight into the genetic control of chondrogenesis. The last group of mutations leads to the abnormal arrangement of skeletal elements and may uncover important tissue-tissue interactions underlying jaw development.
منابع مشابه
Inhibition of Jagged-mediated Notch signaling disrupts zebrafish biliary development and generates multi-organ defects compatible with an Alagille syndrome phenocopy.
The Alagille Syndrome (AGS) is a heritable disorder affecting the liver and other organs. Causative dominant mutations in human Jagged 1 have been identified in most AGS patients. Related organ defects occur in mice that carry jagged 1 and notch 2 mutations. Multiple jagged and notch genes are expressed in the developing zebrafish liver. Compound jagged and notch gene knockdowns alter zebrafish...
متن کاملGeneration and characterization of Kctd15 mutations in zebrafish
Potassium channel tetramerization domain containing 15 (Kctd15) was previously found to have a role in early neural crest (NC) patterning, specifically delimiting the region where NC markers are expressed via repression of transcription factor AP-2a and inhibition of Wnt signaling. We used transcription activator-like effector nucleases (TALENs) to generate null mutations in zebrafish kctd15a a...
متن کاملHigh-Throughput Craniofacial Development Phenotyping in Zebrafish using VAST BioImager
Zebrafish is an emerging vertebrate model organism to study human diseases and toxicology [1]. A variety of genetic tools in zebrafish allow in vivo modeling of human genetic diseases and regeneration [2]. Zebrafish larvae also have small size and optical clarity which allows easy microscopic evaluation of physiological changes and morphological phenotypes. Conventional imaging approaches invol...
متن کاملTissue Specific Roles for the Ribosome Biogenesis Factor Wdr43 in Zebrafish Development
During vertebrate craniofacial development, neural crest cells (NCCs) contribute to most of the craniofacial pharyngeal skeleton. Defects in NCC specification, migration and differentiation resulting in malformations in the craniofacial complex are associated with human craniofacial disorders including Treacher-Collins Syndrome, caused by mutations in TCOF1. It has been hypothesized that pertur...
متن کاملA Zebrafish Model of Roberts Syndrome Reveals That Esco2 Depletion Interferes with Development by Disrupting the Cell Cycle
The human developmental diseases Cornelia de Lange Syndrome (CdLS) and Roberts Syndrome (RBS) are both caused by mutations in proteins responsible for sister chromatid cohesion. Cohesion is mediated by a multi-subunit complex called cohesin, which is loaded onto chromosomes by NIPBL. Once on chromosomes, cohesin binding is stabilized in S phase upon acetylation by ESCO2. CdLS is caused by heter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 123 شماره
صفحات -
تاریخ انتشار 1996